37 research outputs found

    Characterization and Modeling of Atomically Sharp Perfect Si:Ge/SiO_2 Interfaces

    Get PDF
    Using ab-initio calculations and atomic-resolution Z-contrastimag-ing and electron energy-loss spectroscopy, we show thatoxidation of a germanium-implanted Si surface can produce anatomically-sharp interface with a band structure that seems tobe more favor-able for use in electronic devices than theusually diffuse interface in Si/SiO_2. Furthermore, wepropose an ab-initio based Monte-Carlo model to simulateoxidation of SiGe alloys to better under-stand the formation ofthe sharp interface

    Energy-resolved Photoconductivity Mapping in a Monolayer-bilayer WSe2 Lateral Heterostructure

    Full text link
    Vertical and lateral heterostructures of van der Waals materials provide tremendous flexibility for band structure engineering. Since electronic bands are sensitively affected by defects, strain, and interlayer coupling, the edge and heterojunction of these two-dimensional (2D) systems may exhibit novel physical properties, which can be fully revealed only by spatially resolved probes. Here, we report the spatial mapping of photoconductivity in a monolayer-bilayer WSe2 lateral heterostructure under multiple excitation lasers. As the photon energy increases, the light-induced conductivity detected by microwave impedance microscopy first appears along the hetero-interface and bilayer edge, then along the monolayer edge, inside the bilayer area, and finally in the interior of the monolayer region. The sequential emergence of mobile carriers in different sections of the sample is consistent with the theoretical calculation of local energy gaps. Quantitative analysis of the microscopy and transport data also reveals the linear dependence of photoconductivity on the laser intensity and the influence of interlayer coupling on carrier recombination. Combining theoretical modeling, atomic scale imaging, mesoscale impedance microscopy, and device-level characterization, our work suggests an exciting perspective to control the intrinsic band-gap variation in 2D heterostructures down to the few-nanometer regime.Comment: 18 pages, 5 figures; Nano Lett., Just Accepted Manuscrip

    Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    Get PDF
    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.We acknowledge financial support from the European Commission under the Graphene Flagship (GrapheneCore1, grant no. 696656), the ERC starting grant SPINTROS (grant no. 257654), and the Spanish Ministry of Economy and Competitiveness (National plans MAT2014-53432-C5-4-R, MAT2015-65159-R, MAT2015-65525-R, and FIS2016-80174-P). A.K. also thanks for the Czechoslovak Microscopic Society/FEI scholarship.Peer Reviewe

    The structure of DNA by direct imaging

    Get PDF
    The structure of DNA was determined in 1953 by x-ray fiber diffraction. Several attempts have been made to obtain a direct image of DNA with alternative techniques. The direct image is intended to allow a quantitative evaluation of all relevant characteristic lengths present in a molecule. A direct image of DNA, which is different from diffraction in the reciprocal space, is difficult to obtain for two main reasons: the intrinsic very low contrast of the elements that form the molecule and the difficulty of preparing the sample while preserving its pristine shape and size. We show that through a preparation procedure compatible with the DNA physiological conditions, a direct image of a single suspended DNA molecule can be obtained. In the image, all relevant lengths of A-form DNA are measurable. A high-resolution transmission electron microscope that operates at 80 keV with an ultimate resolution of 1.5 Å was used for this experiment. Direct imaging of a single molecule can be used as a method to address biological problems that require knowledge at the single-molecule level, given that the average information obtained by x-ray diffraction of crystals or fibers is not sufficient for detailed structure determination, or when crystals cannot be obtained from biological molecules or are not sufficient in understanding multiple protein configurations

    Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    Get PDF
    Resumen del trabajo presentado a la International Conference on Nanoscience + Technology (ICN+T), celebrada en Brno (Czech Republic) del 22 al 27 de julio de 2018.Only recently, specially designed instrumentation for spatially-resolved electron energy-loss spectroscopy (EELS) has been developed to substantially improve spectral resolution and operating spectral range. This progress has dramatically broadened application potential of EELS in probing low-loss vibrational excitations. Pioneering experiments demonstrated capability of probing vibrational signal in organic samples, ionic crystals, and also van der Waals materials. In our work, we theoretically and experimentally studied the very low-loss EELS of multilayer hexagonal boron nitride (h-BN), a representative van der Waals structure. The weak coupling between individual atomic layer results in extreme optical anisotropy, which gives rise to hyperbolic phonon polaritons (h-PhPs): coupled excitations of optical phonons and light with hyperbolic dispersion in the range of 90 – 200 meV. H-PhPs might be a key to many emerging photonic technologies relying on nanoscale light confinement and manipulation. Thus, efficient design and utilization of h-BN structures require spectroscopic studies with adequate spatial resolution, which can be provided by EELS utilizing electrons as localized electromagnetic probes. To that end, we performed spatially-resolved EELS on a simple h-BN flake structure with an optimized STEM-EELS tool, which revealed the peak energy dependence on the h-BN thickness and on the proximity of the electron beam to the h-BN edge. Such behavior is a consequence of the polaritonic nature of the induced excitations. Indeed, with help of the classical dielectric response theory for EELS, applied to anisotropic slabs and edges, we demonstrate that the electron energy loss in h-BN is dominated by h-PhP excitation and not directly by bulk phonons as in preliminary interpretations. This finding describes and quantitatively matches experimental observations. We thus suggest that EELS can be a technique complementary to scanning near-field optical microscopy for characterization of low-energy phonon polaritons.Peer reviewe

    Addressing vibrational excitations in Van der Waals materials and molecular layers within electron energy loss spectroscopy

    Get PDF
    Trabajo presentado al Microscopy & Microanalysis Meeting, celebrado en Baltimore (USA) del 5 al 9 de agosto de 2018.AK acknowledges Thermo Fisher Scientific and the Czechoslovak Microscopic Society scholarship for young researchers.Peer reviewe

    European Position Paper on Rhinosinusitis and Nasal Polyps 2020

    Get PDF
    The European Position Paper on Rhinosinusitis and Nasal Polyps 2020 is the update of similar evidence based position papers published in 2005 and 2007 and 2012. The core objective of the EPOS2020 guideline is to provide revised, up-to-date and clear evidence-based recommendations and integrated care pathways in ARS and CRS. EPOS2020 provides an update on the literature published and studies undertaken in the eight years since the EPOS2012 position paper was published and addresses areas not extensively covered in EPOS2012 such as paediatric CRS and sinus surgery. EPOS2020 also involves new stakeholders, including pharmacists and patients, and addresses new target users who have become more involved in the management and treatment of rhinosinusitis since the publication of the last EPOS document, including pharmacists, nurses, specialised care givers and indeed patients themselves, who employ increasing self-management of their condition using over the counter treatments. The document provides suggestions for future research in this area and offers updated guidance for definitions and outcome measurements in research in different settings. EPOS2020 contains chapters on definitions and classification where we have defined a large number of terms and indicated preferred terms. A new classification of CRS into primary and secondary CRS and further division into localized and diffuse disease, based on anatomic distribution is proposed. There are extensive chapters on epidemiology and predisposing factors, inflammatory mechanisms, (differential) diagnosis of facial pain, allergic rhinitis, genetics, cystic fibrosis, aspirin exacerbated respiratory disease, immunodeficiencies, allergic fungal rhinosinusitis and the relationship between upper and lower airways. The chapters on paediatric acute and chronic rhinosinusitis are totally rewritten. All available evidence for the management of acute rhinosinusitis and chronic rhinosinusitis with or without nasal polyps in adults and children is systematically reviewed and integrated care pathways based on the evidence are proposed. Despite considerable increases in the amount of quality publications in recent years, a large number of practical clinical questions remain. It was agreed that the best way to address these was to conduct a Delphi exercise. The results have been integrated into the respective sections. Last but not least, advice for patients and pharmacists and a new list of research needs are included.Peer reviewe

    Electrically Active Dislocations at the Si/GaAs Interface

    No full text
    corecore